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Abstract The coupled vibration–dissociation process for Morse oscillators and struc-
tureless particles has been examined. A method to solve the appropriate master equa-
tion is developed. The case has been studied carefully where the dissociation process
starts mainly from the bound level nearest to the dissociation limit. The master equa-
tion has an exact analytical solution in this case upon many-quantum transitions and
for an arbitrary amount of energy transferred per collision. Simple expressions for the
steady-state dissociation rate and for the incubation time are obtained.

Keywords Vibration–dissociation processes · Master equation · Transition
probability · Shock-heated molecules · Orthogonalization procedure

1 Introduction

Vibrational relaxation of diatomic molecules, accompanied by dissociation, has long
been the subject of theoretical investigations [1–5]. Due to the progress in computers,
a numerical treatment of complicated models for the rotation–vibration–dissociation
coupling has become feasible. Nevertheless, analytical approaches shed light on the
nature of the process; allow general conclusions and a correct statement of the problem
for further numerical modeling. This approach holds for the case where dissociation
proceeds from the topmost bound level only. In the framework of this model, account
may be taken of multi-quantum transitions for any amount of internal energy trans-
ferred per collision.
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The Morse oscillator is a practical model of vibrational relaxation. It can reproduce
the vibrational spectrum of diatomic molecules in a semi-quantitative manner. The
matrix elements of vibrational coordinate are also known for discrete-discrete and
discrete-continuum transitions [6]. Numerous calculations are available for collisional
cross-sections and for the rate constants of these transitions [7–11]. A knowledge of the
vibration–dissociation process involved in a system of oscillators makes it possible to
calculate the time-dependent populations of oscillators in the available energy levels.
Conversely, measuring these populations can yield the values for the parameters of
energy transfer accompanied by dissociation. The system of relaxing Morse oscillators
is further called the molecules diluted in inert gas.

Let us assume that the molecules are distributed in a large excess of chemically
inert gas that acts as a heat bath throughout the reaction. The requirement of a constant
temperature T of the heat bath implies that the concentration of reactant molecules
is small compared to that of inert atoms. The vibrational degrees of freedom are
initially characterized by the equilibrium thermal distribution at temperature Ti such
that Ti � T . A shock wave serves as a source of nonequilibrium. Due to collisions
with atoms, the molecules are excited into higher vibrational energy levels until they
reach the N th level where they dissociate irreversibly and remove from the reaction
system. In the framework of this approach, we are going to offer an analytical model
with an exact solution.

2 Model of the vibration–dissociation process

The Morse oscillator is commonly used to model vibrations of a diatomic molecule.
In the discrete spectrum there are N + 1 bound energy levels

En = h̄ωe

(
n + 1

2

)
− h̄xeωe

(
n + 1

2

)2

, (1)

where the anharmonicity constant xe relates to the topmost level N via the equation
xe = 1/(2N + 1) and equals h̄ωe/4D, where D is the dissociation energy. The
equilibrium thermal distribution is of the form

ρn(θ) = Q−1 exp

{
−θ

(
n + 1

2

)[
1 − 2n + 1

2(2N + 1)

]}
, (2)

where θ = h̄ωe/kB T and Q is the partition function of the Morse oscillator.
A conventional method to calculate the master equation involves the expansion

of populations in terms of a proper set of eigenfunctions. We are going to apply the
orthonormalized polynomials �k(n, θ), generated by the weight function ρn(θ), in
the range n = 0, 1, . . . , N , namely:

N∑
n=0

ρn(θ)�k(n, θ)�k′(n, θ) = δkk′ , (3)
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where �0(n, θ) = 1 and the other polynomials are determined using orthogonalization
procedure (“Appendix”). These polynomials satisfy the completeness property

ρn(θ)

N∑
k=0

�k(n, θ)�k(n
′, θ) = δnn′ (4)

Collisions result in the Xn(t) fraction of excited molecules in the vibrational level n
at the time t . On the way up the energy ladder, the molecules reach the dissociation
threshold and decompose. This process is described by a system of linear differential
equations with constant coefficients (the so-called master equation) [1–5]

d

dt
Xn(t) =

N∑
n′=0

[kn′→n Xn′(t) − kn→n′ Xn(t)] − kn→c Xn(t), (5)

where kn→n′ is the level-to-level rate coefficient proportional to the number density
of inert gas, and c denotes the continuum.

At present, there are a lot of interpolation formulas or fitting laws to reproduce
rate constants, calculated for VT energy transfer [7–11]. In particular, the studies on
vibrational relaxation [12–14] indicate that expanding in terms of a complete set of
orthonormalized polynomials is a good approximation for rate coefficients

kn→n′ = νρn′(θ)

N∑
k=0

(
1 − 1

ZV

)k

�k(n, θ)�k(n
′, θ) (6)

Here ν is the frequency of collisions in the large excess of inert gas, ZV is the mean
number of collisions necessary to attain the equilibrium state. The ZV values are
determined experimentally by various methods [15]. The limit of strong collisions
implies that ZV = 1 and the weak collisions are realized at ZV � 1. The rates kn→n′
satisfy the principle of detailed balance.

For the discrete-continuum transitions, the rate kn→c decreases exponentially with
the difference between the energy in the continuum spectrum and the discrete level
energy [8,9]. Approximately, the dissociation follows mainly from the last bound level
(the ladder climbing model). The dependence of dissociation rate coefficients on the
vibrational quantum number is taken into account in the simplest way in the framework
of this model

kn→c = δnN kN (7)

Solution to the master equation for populations is sought as the expansion in terms of
the orthonormalized polynomials

Xn(t) = ρn(θ)

N∑
k=0

Ck(t)�k(n, θ) (8)
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The temporal evolution of the populations is determined by the time-dependent expan-
sion coefficients Ck(t). The completeness property of the �k(n, θ) polynomials is used
to express these coefficients through the populations

Ck(t) =
N∑

n=0

Xn(t)�k(n, θ) (9)

Thus, the coefficients Ck(0), taken at t = 0, are given in terms of the initial condition for
the populations. Note that the concentration of molecules (the sum of all populations)
is provided by C0(t).

We solve now the master equation in which all the populations are expressed in
terms of the population of the topmost level. Substituting Eq. (8) into (5) and taking
account of the orthogonality condition, we get

d

dt
Ck(t) = −

(
1 − γ k

)
νCk(t) − kN �k(N , θ)X N (t) (10)

To avoid cumbersome formulas, we introduce the notation

γ = 1 − 1

ZV
(11)

Solution to this equation is of the form

Ck(t) = Ck(0) exp
[
−(1 − γ k)νt

]

− kN �k(N , θ)

t∫
0

X N (t ′) exp
[
−(1 − γ k)ν(t − t ′)

]
dt ′

(12)

The calculated coefficients Ck(t) are used to obtain the solution to Eq. (5)

Xn(t) = ρn(θ)

N∑
k=0

Ck(0)�k(n, θ) exp
[
−(1 − γ k)νt

]

− kN ρn(θ)

N∑
k=0

�k(n, θ)�k(N , θ)

t∫
0

X N (t ′) exp
[
−(1 − γ k)ν(t − t ′)

]
dt ′

(13)

The first term describes the relaxation process with the VT energy transfer and depends
on the initial condition. The second term is proportional to the outgoing rate and
contributes to dissociation. Vibrational relaxation exerts some action on its change
with time. Thus, all the populations are given in terms of the unstable level population
to be determined.
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3 Time-dependent population of the unstable level

As follows, Eq. (13) at n = N is the integral equation of the Volterra type for the
desired X N (t) population. In other words, at time t the unstable level population
depends on the complete previous history of X N (t ′). Since the kernel of this equation
depends on the argument difference, the Laplace transform is a standard method of
solution. We use the notation

	

Xn(z) =
∞∫

0

e−zt Xn(t)dt (14)

Applying the Laplace transform to both of the sides of Eq. (13), we get

	

Xn(z) = ρn(θ)

N∑
k=0

�k(n, θ)

z + (1 − γ k)ν

[
Ck(0) − kN �k(N , θ)

	

X N (z)
]

(15)

From this equation, we find the desired relation for
	

X N (z)

	

X N (z) = ρN (θ)

[
1 + kN ρN (θ)

N∑
k=0

�k(N , θ)2

z + (1 − γ k)ν

]−1 N∑
k=0

Ck(0)�k(N , θ)

z + (1 − γ k)ν
(16)

Now Eq. (15) may be used to determine all the other
	

Xn(z). For calculations it is more
convenient to restore the inverse transform X N (t), and to find the time-dependent
populations from Eq. (13). Then, we are going to calculate the unstable level population
as a function of time without any approximations.

To this end, the
	

X N (z) function is presented as the ratio of two polynomials

	

X N (z) = a(z)

b(z)
, (17)

where

a(z) = ρN (θ)

N∑
k=0

Ck(0)�k(N , θ)dk(z) (18)

and

b(z) = c(z) + kN ρN (θ)

N∑
k=0

�k(N , θ)2dk(z) (19)

We have introduced the following notations

c(z) =
N∏

k=0

[
z + (1 − γ k)ν

]
(20)
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and

dk(z) = c(z)

z + (1 − γ k)ν
=

N∏
j=0

i f
[

j = k, 1, z + (1 − γ j )ν
]

(21)

The function under the product sign is 1 with j = k, otherwise z + (1 − γ j )ν.

As the
	

X N (z) function is the ratio of two polynomials, its singular points are only
zeroes of the b(z) denominator. In this case, all of these are the poles. Hence the inverse
transform X N (t) has the form

X N (t) =
N∑

k=0

res

[
ezt a(z)

b(z)
, zk

]
(22)

where b(zk) = 0. Let all of the zeroes be simple. Then, using the formula for calculating
residues of function in simple poles, we obtain

X N (t) =
N∑

k=0

a(zk)

b′(zk)
ezk t (23)

The b(z) polynomial may be represented as the product (z − z0) · · · (z − zN ). In this
case, the b′(zk) derivative is readily calculated to be

b′(zk) =
N∏

j=0

i f
(

j = k, 1, zk − z j
)

(24)

In general, the solution is of the form

X N (t) =
∑
k=0

fk(t)e
zk t (25)

When the multiplicity of root is s, then fk(t) is written as the expansion in terms of t

fk(t) = f0k + f1k t + · · · + fs−1,k t s−1 (26)

The expansion coefficients are determined from the formula for calculating the residue
of the sth power. We have calculated these coefficients numerically.

Now, we obtain a few analytical results following from the general theory. The
numerical calculations indicate that the minimal root z0 is negligibly small. Thus,
this root is determined from Eq. (19) in the limit where z tends to zero. The simple
calculations give

z0 ≈ −kN ρN (θ)

[
1 + kN ρN (θ)

ν

N∑
k=1

�k(N , θ)2

1 − γ k

]−1

(27)
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When there is no decomposition of molecules, the minimal root is rigorously zero.
By order of magnitude it equals kN ρN (θ). Since the denominator contains a positive
value, |z0| is always smaller than kN ρN (θ). Usually, the |z0| value is identified with
the steady-state dissociation rate kd . This notation will be used in what follows.

Of particular interest is the general character of the expression derived without both
using the explicit dependence of energy levels on the vibrational quantum number
and concretizing the form of transition probabilities. Therefore, we may indicate the
interval within which the kd value varies. For strong collisions, we have γ k = δk0,
and the outgoing rate is approximately equal to the collision frequency. In this case,
kd reaches its maximal value νρN (θ)/2 which actually holds for “supercollisions”,
where an inordinate amount of energy is transferred in a single event [16–18]. For weak
collisions, 1 − γ k is equal to k/ZV , where the mean number of collisions is large.
This is the most interesting case of vibrational relaxation where the main contribution
is made by transitions between the neighboring levels. For a harmonic oscillator this
dependence is the exact result [1,19]. Then Eq. (27) takes on the form

kd = kN ρN (θ)

1 + kN ZV /νN∗
, (28)

where
1

N∗
= ρN (θ)

N∑
k=1

�k(N , θ)2

k
(29)

Using the completeness property of the �k(N , θ) polynomials, it is concluded that
the number N∗ is limited and varies between unity and N . Taking into account these
considerations, we conclude that

N∗
ZV

<
kd

νρN (θ)
<

1

2
(30)

It is instructively to compare the results of the general theory with those obtained for
the truncated harmonic oscillator [1,19,20]. The main shortcoming of the model is
that it neglects the anharmonicity of vibrations. Although the steady-state dissociation
rate takes on the form of Eq. (28), the effective number N∗ is equal to the number of
the bound levels in this model [1]. Figure 1 shows the real temperature dependence of
N∗ for oxygen. Only at low temperature N∗ tends to the number of bound levels.

The asymptotic behavior of X N (t) is determined by the first term in the infinite
series (23). For the exp(−kd t) term, the coefficient of proportionality may be written
in the explicit form by tending z0 to zero in the a(z0)/b′(z0) ratio. It is easy to see that

X N (t) ≈ X (0)ρN (θ)
(1 − γ ) · · · (1 − γ N )

(−z1/ν) · · · (−zN /ν)
e−kd t (31)

where X (0) = C0(0) is the initial concentration of molecules. The ratio of the roots
is always less than unity. This simple fact implies that the concentration of molecules
differs from the initial one when an exponential decay is reached. Let us rewrite
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Fig. 1 The effective number N∗ as a function of temperature for oxygen with N = 52

Eq. (31), taking into account the condition at t = τ , where τ is the time from which
the exponential decay is valid with the rate |z0| = kd

X N (t) = X N (τ ) exp [−kd(t − τ)] , t ≥ τ (32)

Equation for evaluating this time is

(1 − γ ) · · · (1 − γ N )X (0)ρN (θ)

(−z1/ν) · · · (−zN /ν)X N (τ )
e−kdτ ≈ 1 (33)

This fraction is the ratio between the approximate and the exact solutions. Beginning
from the time τ this ratio reaches unity and stops to depend on τ with further increase
in this time. This delay at the beginning of the dissociation process corresponds to the
incubation time.

4 Relaxation of the mean vibrational energy

It is interesting to determine how the mean energy of a system relaxes to the steady
state. To this end we apply the Xn(t)/X (t) distribution. The time-dependent mean
vibrational energy is defined as

〈〈E(t)〉〉 = 1

X (t)

N∑
n=0

En Xn(t) (34)

All the calculations are performed quite easily if the dependence of energy levels
on the vibrational quantum number is represented as the expansion in terms of the
�k(n, θ) polynomials, namely:
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En

h̄ωe
= (1 − xe)

[
〈n〉T +√d2�1(n, θ)

]

− xe

⎡
⎣〈n2

〉
T

+ d3√
d2

�1(n, θ) +
(

d4 − d2
3

d2

) 1
2

�2(n, θ)

⎤
⎦ (35)

The zero-point energy is taken, as is the convention, as the energy zero. Formulas for the
dk coefficients, the first and the second polynomials are presented in the “Appendix”.
The mean energy is expressed in the obvious way through the first and second moments
of the time-dependent distribution

〈〈E(t)〉〉
h̄ωe

= (1 − xe) 〈〈n(t)〉〉 − xe

〈〈
n2(t)

〉〉
(36)

Equation (8) and the orthogonality condition allow these moments to be given in terms
of the Ck(t) coefficients:

〈〈n(t)〉〉 = 〈n〉T +√d2
C1(t)

C0(t)
(37)

and 〈〈
n2(t)

〉〉
=
〈
n2
〉
T

+ d3√
d2

C1(t)

C0(t)
+
(

d4 − d2
3

d2

) 1
2 C2(t)

C0(t)
(38)

Remember that X (t) = C0(t). As is seen each moment is expressed via the finite sum
of the Ck(t) coefficients. Conversely, each coefficient is provided by the finite sum
of the moments. Thus, Eq. (36) together with Eqs. (12) and (25) solve the problem
stated. Besides, the time-dependent coefficients take a remarkably simple form when
in the equation b(zk) = 0 all zk are the simple roots

Ck(t) = Ck(0)e−(1−γ k )νt − kN �k(N , θ)

N∑
m=0

a(zm)
(

e−(1−γ k )νt − e−|zm |t
)

b′(zm)
[|zm | − (1 − γ k)ν

] (39)

The concentration of molecules is given by the equation

X (t) = X (0) − kN

N∑
m=0

a(zm)
(
1 − e−|zm |t)

b′(zm)|zm | (40)

At short times, for kd t << 1, all the Ck(t) coefficients relax at the rates of vibrational
relaxation, (1 − γ k)ν. At long times, on order of 1/kd , the system tends to the steady
state. In this case, the time dependence of the coefficients with k = 0 changes due to
dissociation and depends on the term of the exp(−kd t) type. The concentration of the
molecules tends to the steady-state limit X (∞).

The time-dependent moments approach the steady-state values from below if the
temperature of inert gas exceeds that of the vibrational system (after shock heating). In
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Fig. 2 The mean vibrational energy of HCl in argon at 7,000 K and ZV = 110 as a function of the number
of collisions νt

the course of time, the mean vibrational energy also manifests such a behavior. Figure 2
shows the mean vibrational energy of HCl in argon as a function of the number of
collisions. In other words, the time is given in 1/ν units, where ν = 3.7 × 108 s−1 for
an argon density of 1.05 × 1018 cm−3. The mean number of collisions was estimated
as ZV = ντV , where the vibrational relaxation time is 0.3 µs [21]. Thus, we get ZV =
110 at 7000 K. The dissociation rate constant (kd/n Ar where n Ar is the number density
of argon) is equal to 4.6×10−15 cm3/s. From formula (28) we get 4.8×10−15 cm3/s.
The coincidence of these values indicates that the main contribution is made by the
one-quantum transitions. The incubation time is 2 µs, i.e., the quasi-stationary phase
is attained after about 700 collisions. At these times, the mean energy is almost equal
to a steady-state value of 4,127 cm−1.

5 Conclusions

The coupled vibration–dissociation process has been thoroughly discussed in the lit-
erature. Nevertheless, we have presented a physically meaningful example where the
master equation has an exact, analytical solution. The populations are represented as
the expansion in terms of the orthonormalized polynomials and the time-dependent
expansion coefficients are given by the simple expression. These equations allow one
to present clearly the temporal evolution of the mean occupation number and the higher
moments for the coupled vibration–dissociation process. This is the main achievement
of the analytical approach because a numerical solution to the system of equations from
(5) may be obtained without any difficulty at least for not too large number of bound
states.

The orthonormalized polynomials are constructed so that their orthogonalization
may be verified at each step and the completeness property may be checked at the end.
It is the condition which guarantees the ability to present solution as the expansion in
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terms of these polynomials. Thereafter, the polynomials may be used in any relaxation
process involving the Morse oscillators.

6 Appendix: Orthogonalization procedure

The general theory of orthogonal polynomials offers the following recurrent equation
for three neighboring polynomials [22]

Pk+1(n) =
(

n −
〈
n Pk(n)2

〉
T〈

Pk(n)2
〉
T

)
Pk(n) − 〈n Pk−1(n)Pk(n)〉T〈

Pk−1(n)2
〉
T

Pk−1(n), (41)

where P−1(n) = 0 and P0(n) = 1. The angular brackets indicate the averaging
with a weight function. In this case, this is the thermal distribution from Eq. (2). The
orthonormalized polynomials are given by the equation

�k(n, θ) = Pk(n)√〈
Pk(n)2

〉
T

(42)

The orthogonalization procedure allows one to sequentially find all the necessary
polynomials beginning with �0(n, θ) = 1. The following two polynomials are of the
form

�1(n, θ) = n − 〈n〉T√
d2

(43)

and

�2(n, θ) =
(

d2

d4d2 − d2
3

) 1
2 [

n2 −
〈
n2
〉
T

− d3

d2
(n − 〈n〉T )

]
(44)

The coefficients dk are defined as

d2 =
〈
(n − 〈n〉T )2

〉
T

, (45)

d3 =
〈(

n2 −
〈
n2
〉
T

)
(n − 〈n〉T )

〉
T

, (46)

d4 =
〈(

n2 −
〈
n2
〉
T

)2
〉

T
(47)

All the other polynomials were calculated numerically.
In the high-temperature limit, where θ = h̄ωe/kB T is less than unity, the recurrent

equation makes it possible to sequentially calculate all the necessary polynomials up
to N ≈ 100, which corresponds to the anharmonicity constant of bromine (xe =
0.005). Of particular interest is the case of high temperatures where the vibrational
nonequilibrium is produced by a shock wave.

123



2422 J Math Chem (2014) 52:2411–2422

References

1. E.E. Nikitin, Theory of Elementary Atomic and Molecular Processes in Gases (Clarendon Press,
Oxford, 1974)

2. J. Troe, J. Chem. Phys. 66, 4745 (1977)
3. I. Oref, D.C. Tardy, Chem. Rev. 90, 1407 (1990)
4. M.J. Pilling, S.H. Robertson, Annu. Rev. Phys. Chem. 54, 245 (2003)
5. A. Fernandez-Ramos, J.A. Miller, S.J. Klippenstein, D.G. Truhlar, Chem. Rev. 106, 4518 (2006)
6. E.F. de Lima, J.E.M. Hornos, J. Chem. Phys. 125, 164110 (2006)
7. N.N. Sobolev, V.V. Sokovnikov, Soviet Physics-Uspekhi (Adv. Phys. Sci.) 16, 350 (1973)
8. J.H. Kiefer, J.C. Hajduk, Chem. Phys. 38, 329 (1979)
9. D.A. Gonzales, P.L. Varghese, J. Phys. Phys. 97, 7612 (1993)

10. J.I. Steinfeld, P. Ruttenberg, G. Millot, C. Fanjoux, B. Lavorel, J. Phys. Chem. 95, 9638 (1991)
11. F.B. Gordiets, A.I. Osipov, L.A. Shelepin, Kinetic Processes in Gases and Molecular Lasers (Gordon

and Breach, London, 1988)
12. M.L. Strekalov, Chem. Phys. 389, 47 (2011)
13. M.L. Strekalov, J. Math. Chem. 50, 1021 (2012)
14. M.L. Strekalov, J. Math. Chem. 51, 2104 (2013)
15. B. Stevens, Collisional Activation in Gases (Pergamon Press, London, 1967)
16. D.L. Clarke, K.C. Thompson, R.G. Gilbert, Chem. Phys. Lett. 182, 357 (1991)
17. V. Bernshtein, I. Oref, J. Phys. Chem. 97, 12811 (1993)
18. L. Yuan, J. Du, A.S. Mullin, J. Chem. Phys. 129, 014303 (2008)
19. E.W. Montroll, K.E. Shuler, Adv. Chem. Phys. 1, 361 (1958)
20. K.E. Shuler, J. Chem. Phys. 31, 1375 (1959)
21. D.J. Seery, J. Chem. Phys. 58, 1796 (1973)
22. A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Nauka, Moscow, 1978). In

Russian

123


	An exact analytical solution to the master equation for the vibration--dissociation process of Morse oscillators
	Abstract
	1 Introduction
	2 Model of the vibration--dissociation process
	3 Time-dependent population of the unstable level
	4 Relaxation of the mean vibrational energy
	5 Conclusions
	6 Appendix: Orthogonalization procedure
	References


